Top 10 Biggest Unanswered Mysteries And Questions About Human Brain

The Mystery of Brain Science That No One Is Discussing: The Number Questions You Must Ask for Brain Science

Of all the objects in the universe, the human brain is the most complex: There are as many neurons in the brain as there are stars in the Milky Way galaxy. So it is no surprise that, ­despite the glow from recent advances in the science of the brain and mind, we still find ourselves squinting in the dark somewhat. But we are at least beginning to grasp the crucial mysteries of neuroscience and starting to make headway in addressing them. Even partial answers to these 10 questions could restructure our understanding of the roughly three-pound mass of gray and white matter that defines who we are.

What does the baseline activity in the brain represent?

Neuroscientists have mostly studied changes in brain activity that correlate with stimuli we can present in the laboratory, such as a picture, a touch, or a sound. But the activity of the brain at rest—its “baseline” activity—may prove to be the most important aspect of our mental lives. The awake, resting brain uses 20 percent of the body’s total oxygen, even though it makes up only 2 percent of the body’s mass. Some of the baseline activity may represent the brain restructuring knowledge in the background, simulating future states and events, or manipulating memories. Most things we care about—reminiscences, emotions, drives, plans, and so on—can occur with no external stimulus and no overt output that can be measured.

One clue about baseline activity comes from neuroimaging experiments, which show that activity decreases in some brain areas just before a person performs a goal-directed task. The areas that decrease are the same regardless of the details of the task, hinting that these areas may run baseline programs during downtime, much as your computer might run a disk-defragmenting program only while the resources are not needed elsewhere.

In the traditional view of perception, information from the outside world pours into the senses, works its way through the brain, and makes itself consciously seen, heard, and felt. But many scientists are coming to think that sensory input may merely revise ongoing internal activity in the brain. Note, for example, that sensory input is superfluous for perception: When your eyes are closed during dreaming, you still enjoy rich visual experience. The awake state may be essentially the same as the dreaming state, only partially anchored by external stimuli. In this view, your conscious life is an awake dream.

How do brains simulate the future?

When a fire chief encounters a new blaze, he quickly makes predictions about how to best position his men. Running such simulations of the future—without the risk and expense of actually attempting them—allows “our hypotheses to die in our stead,” as philosopher Karl Popper put it. For this reason, the emulation of possible futures is one of the key businesses that intelligent brains invest in.

Yet we know little about how the brain’s future simulator works because traditional neuroscience technologies are best suited for correlating brain activity with explicit behaviors, not mental emulations. One idea suggests that the brain’s resources are devoted not only to processing stimuli and reacting to them (watching a ball come at you) but also to constructing an internal model of that outside world and extracting rules for how things tend to behave (knowing how balls move through the air). Internal models may play a role not only in motor acts, like catching, but also in perception. For example, vision draws on significant amounts of information in the brain, not just on input from the retina. Many neuroscientists have suggested over the past few decades that perception arises not simply by building up bits of data through a hierarchy but rather by matching incoming sensory data against internally generated expectations.

But how does a system learn to make good predictions about the world? It may be that memory exists only for this purpose. This is not a new idea: Two millennia ago, Aristotle and Galen emphasized memory as a tool in making successful predictions for the future. Even your memories about your life may come to be understood as a special subtype of emulation, one that is pinned down and thus likely to flow in a certain direction.

Prev1 of 9Next

Loading...

One thought on “Top 10 Biggest Unanswered Mysteries And Questions About Human Brain

Leave a Reply

Your email address will not be published. Required fields are marked *